

Robust Deep Learning from Crowds with Belief Propagation

1. Introduction

Learning from Crowds with Confusion Matrix

In crowdsourcing systems, we can obtain noisy datasets from workers. We infer true labels z and learn a classifier ϕ by modeling workers with confusion matrix θ .

Crowds from Prior Distribution

Assuming worker u follows prior distribution parameterized by α , confusion matrix $\boldsymbol{\theta}^{(u)} \in [0,1]^{K \times K}$ denoting average ability for K classes is drawn from worker prior.

Importance of worker prior α

Inference performance depends on α + Optimal inference with true α

Unstable learning of confusion matrix (CM)

Initialization sensitivity + Sparsity in crowds' labels

 \rightarrow We i) integrate the existing methods using CM through mean-field and ii) propose a robust framework through belief-propagation.

2. Related Work

Inference and Learning with Worker Prior

- Q. Liu et al., Variational Inference for Crowdsourcing. NeurIPS, 12.
- O. Jungseul et al., Optimality of Belief Propagation for Crowdsourced Classification. ICML, 16.
- R. Tanno et al., Learning from Noisy Labels by Regularized Estimation of Annotator Confusion. CVPR, 19.
- L. Shao-Yuan et al., Crowdsourcing Aggregation with Deep Bayesian Learning. Sci China Inf Sci, 21.

Belief Propagation with Deep Learning

- Z. Zhang et al. Factor Graph Neural Networks. NeurIPS, 20.
- J. Kuck et al., Belief Propagation Neural Networks. NeurIPS, 20.
- Satorras and Welling, Neural Enhanced Belief Propagation on Factor Graphs. AISTATS, 21.

Hoyoung Kim^{*}, Seunghyuk Cho^{*}, Dongwoo Kim, Jungseul Ok

Pohang University of Science and Technology, *equal contribution

3. Alternating Inference and Learning

While not converged **do**

Clip the output of a classifier to regulate overfitting in learning

Infer true labels *z* using clipped output and a variational distribution

Learn a classifier ϕ with maximizing the ELBO

Obtain \boldsymbol{z} and ϕ

Alternating inference and learning with different variational approaches is proposed.

Deep Mean-Field: unified view of previous methods

Variational distribution $q(\mathbf{z}, \boldsymbol{\theta}) = q(\mathbf{z})q(\boldsymbol{\theta})$ follows mean-field approximation. Equipping with Dirichlet prior Dir(α), existing methods are special cases of deepMF.

Methods	Worker prior α	$oldsymbol{q}(oldsymbol{ heta})$	Hyperparameters
CL (Rodrigues and Pereira, 18)	$\alpha = 1$	Dirac delta	Many
Trace (Tanno et al., 19)	$\alpha_{kk} < 1, \alpha_{kk'} = 1 \ (k' \neq k)$	Dirac delta	Many
BayesDGC (Li et al., 21)	Not predetermined	Dirichlet	Many
deepMF	Not predetermined	Dirichlet	Few
deepBP	Not predetermined	No	Few

Deep Belief-Propagation: robust Bayesian framework

Variational distribution $q(\mathbf{z})$ is obtained from belief-propagation.

Operation of belief-propagation

The likelihood is expressed as factor graph which contains tasks' and workers' factors.

After updating the messages, we aggregate belief for $q(\mathbf{z})$.

Fast belief-propagation message update

The message update required $O(2^r)$ is lowered to $O(r \cdot S)$, where r and S is the number of tasks per worker and samples in Monte-Carlo.

Robust on canonical scenarios

DeepBP is robust against i) true prior, ii) feature overfitting and iii) extreme workers.

Noisy labels

0.25

4. Robustness Analysis

Sparse Crowdsourcing System

Assuming 1,000 tasks and 750 workers, (l = 3, r = 4)regular bipartite graph is generated for assignment graph.

Labels are provided following workers' confusion matrices drawn from true prior.

Extreme-worker labels uniformly across all 1,000 tasks.

Performance of inference z and learning ϕ is measured. Workers per task (l = 3)

Robustness to Prior and Extreme-worker

Overconfidence and Local Minima Issues in Mean-Field

5. Takeaways

- Previous deep crowdsourcing methods are special cases of deepMF with specific choices of worker prior.
- By the theoretical guarantee on BP for inference, BP-based methods are more robust than MF-based methods in canonical scenarios.

(a) BP robustly utilize any true prior.

(b) Even with an extreme-worker and mismatched prior, BP is robust.

(a) The marginals of MF are more overconfident than BP's.

MF falls into a local minima more easily than BP.