

Active Learning in Semantic Segmentation

Pixel-wise Query in Semantic Segmentation

Query – "What is the class of a pixel?"

Image [Desai & Ghose, 21]

Boundary [P. Colling et al., 20]

Pixe [G. Shin et al., 21]

Such dense annotations are precise, but costly.

Clustered Query with Dominant Labeling

Query – "What is the dominant class of x?"

Patch [L. Cai et al., 21]

Superpixel [L. Cai et al., 21]

Such clustered annotations are inaccurate, but economical.

Inherent Limitations of Superpixels

High quality

Hyperparameter sensitivity

Large quantity

(RGB-based) Base superpixels

Oversegmentation issue

Adaptive Superpixel for Active Learning in Semantic Segmentation ICCV23

Hoyoung Kim, Minhyeon Oh, Sehyun Hwang, Suha Kwak, Jungseul Ok

Pohang University of Science and Technology

Adaptive Merging

We merge neighboring superpixels of similar class predictions.

 $d_{\text{JSD}}(f_{\theta}(n_1), f_{\theta}(n_2)) < \epsilon$

discrepancy between the class predictions of two superpixels

Adaptive Sieving

We sieve pixels with low confidence on acquired label D(s).

 $\{x \in s : f_{\theta}(\mathsf{D}(s); x) \ge \phi(s; \theta)\}$

the set of pixels with high confidence

Adaptive Superpixel

Proposed Active Learning Framework

Adaptive superpixels (t = 4)

Effect of Adaptive Superpixels

- active learning requiring dense annotations.
- labels caused by dominant labeling.

Experiments

Oracle superpixels

Conclusion

Adaptively merged superpixels are cost-effective query for

Adaptive sieving technique alleviates the side effect of noisy